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The numerical behavior of a modified orthogonal collocation method, as applied to the 
transport equations, can be examined through the use of a Fourier series analysis. The 
necessity of such a study becomes apparent in the analysis of several techniques which 
emulate classical upstream weighting schemes. These techniques are employed in orthogonal 
collocation and other numerical methods as a means of handling parabolic partial differential 
equations with significant first-order terms. Divergent behavior can be shown to exist in one 
upstream weighting method applied to orthogonal collocation. 

Under certain simplifying assumptions mass transport in one space dimension can 
be described by the relationship 

where the velocity u&/T) and the dispersion coefficient D(L*/T) are assumed to be 
specified constant coefficients. It is well documented that numerical solutions to this 
equation are characterized by oscillations when the convective term is dominant (see, 
for example, Strang and Fix [4, p. 2531 or Gray and Pinder [ 11). As a means of 
alleviating this numerical difficulty at the cost of smearing the solution profile, 
numerically symmetric techniques are modified to account for the fact that the 
convective process has a directional or one-sided nature. One such modification, 
known as upstream weighting, is well known when applied to finite difference 
schemes and has recently been extended to Galerkin finite element formulations (see, 
for example, Huyakorn [2]). Pinder and Shapiro [3] applied a similar methodology 
to the orthogonal collocation method through the use of an asymmetric basis 
function. The propogation characteristics of these modified schemes have not been 
previously examined using a Fourier series analysis. 
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In this paper a Fourier series analysis of the orthogonal collocation method is 
presented. Finite difference and Galerkin finite element formulations are also 
analyzed with and without upstream weighting. In addition to information concerning 
stability and convergence the Fourier series analysis provides quantitative insight into 
the problems associated with the solution of parabolic partial differential equations 
with significant first-order spatial derivatives. It also illustrates the role of upstream 
weighting in each of the methods utilized. The method of analysis presented in this 
paper is similar to that employed by Gray and Pinder [l] in their investigation of 
finite difference and Galerkin finite element approximations to the mass transport 
equation. 

FOURIER SERIES ANALYSIS 

The Fourier series method of analysis employs a series of trigonometric functions 
to examine the translational and dissipative characteristics of numerical approx- 
imations to partial differential equations. 

Analytical Representation 

The solution to the analytical operator (Eq. (1)) is assumed to have the following 
form: 

c(x, t) = g F,, exp[z&t + k,,x], (2) 

where the F,, coefficients are dependent upon the initial conditions imposed on Eq. 
(l), i= (-l)““, and p, and o,, are respectively the temporal and spatial frequencies of 
the nth component of the series. More commonly, 6, is referred to as the wave 
number and defined as 

27r 
U” = - 

=n ’ 
(3) 

where L, is the wavelength of the nth component of the series. Figure 1 graphically 
displays two conventional means of depicting the propagation of a given wavelength. 
Associated points in each diagram are labeled showing the correspondence that exists 
between each representation. 

The linearity of Eq. (1) and the theory of superposition allows the eigenfunction 
relationship to be determined by an arbitrary term in the solution expansion, i.e., 

c-c, = F,, exp[lp,t + iu,x]. (4) 

Substitution of Eq. (4) into (1) yields the analytical expression describing the 
temporal frequency as a function of the wave number or spatial frequency, viz., 

p,, = o,,(fDo, - u). (5) 
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FIG. 1. Diagrammatic representation of a typical waveform in Fourier analysis in real space and in 
the complex plane; u is the wave celerity. 

Therefore, a term in the general solution to Eq. (1) has the form 

c - c, = F, exp[-Daf,t] exp[iu,(x - ut)]. (6) 

The amplitude of the nth component is described by the first two terms and the 
translation by the final component of Eq. (6). 

Numerical Representation of Orthogonal Collocation 

A numerical solution may be expressed by a Fourier series expansion in a similar 
way to that described above. However, instead of considering the analytical operator, 
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attention is now focused on a discretized form of Eq. (I). The collocation approx- 
imation is formulated by using the weighted residual method, viz., 

I R . wi(x) dx = 0, i = 1, 2 ,..., N, (7) 
.I 

where the weighting function w,. is selected as the Dirac delta function evaluated at 
the collocation points, i.e., 

W/(X) = 6(X - Xi) (8) 

and the residual R is defined as 

R = L(t), (9) 

where c^ is a trial function. When these collocation points are chosen to be the Gauss 
points of each spatial increment the method is called orthogonal collocation. Because 
of the properties of the Dirac delta function, Eq. (7) can be written simply as 

L(qi = i = 1, 2,.. ., N. (10) 

Modified Hermite cubic polynomials are designated as the basis for the trial function, 
c^, providing two unknown coefftcients (c and &/ax) at each nodal location; thus 

c^ = ,gl cj(f> $Ojtx> + 2 Cf) 9lj(x)9 

where 

4lj = + (U + Vj)2(rl - Vj) - a1 rljAx(V2 - l>' (12b) 

with 

qj= f 19 Ax=x; -x;, and ?j=2 

The coefficients a, and a, generate asymmetry in the basis functions. Although this 
method of applying the asymmetric basis function to each term in the differential 
operator is most consistent with the method of weighted residuals, it is shown in 
subsequent sections that such an approach leads to a numerical scheme which 
diverges from analytical behavior. A further modification of the collocation scheme 
will be discussed which eliminates this problem and allows the asymmetry in the 
basis function to alleviate some of the difftculties associated with the numerical 
solution to convection dominated forms of Eq. (1). 
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Combination of Eqs. (7) through (11) yields the following set of ordinary 
differential equations: 

-D cj!f$+?$ff$)/I =O, i=l,2 ,..., N. (13) 
XI 

A finite difference approximation in time may be used to arrive at the final form of 
the approximation, 

+y u c;+At- 
[( 

4oj + _ D Ct,+At d2@oj + aCjtAt d*dIj aC~tAt d#,j 

--I ( dx 8x dx J dx2 22-z )I 
[( 4oj +(1-y) u cj- 

acj d$,j 
- 

dx +x dx 
= 0, 

x, 
i = 1, 2 ,..., N. (14) 

The parameter y is used to position the spatial derivative in the time domain, e.g., 
when y = 1, a backward difference scheme is generated. 

It is now assumed that the solution to (14) can be written in a form analogous to 
the analytical case, Eq. (4): 

cj(t> ry f F, exp[ i@ + i’cr,(jdx)] (15) 
n=-p 

and 

2 (t)” f S, exp[&t + iu,(jdx)], 
?t-p 

where /$:, is the temporal frequency of the numerical scheme and p corresponds to the 
integer number associated with the smallest wavelength that can be propagated by the 
numerical approximation, The numerical representation having a finite number of 
Fourier series components is a result of the spatial discretization in the numerical 
scheme. Thus the range of spatial frequencies is limited by the size of dx. If one is to 
consider only the nodal values Cj, wavelengths smaller than 2dx cannot be resolved. 
Notice in Fig. 2a that the ldx wavelength cannot be defined. However, in dealing 
with the Hermite basis function and interpolating the solution between nodes a cubic 
polynomial results which allows the resolution of a ldx wavelength. Figure 2b gives 
a graphical representation of this phenomena. 

Further examination of Eqs. (15) and (16) indicates that the numerical 
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FIG. 2. (a) Resolution of minimum wavelengths for Co continuous elements. (b) Resolution of 
minimum wavelengths for C’ continuous elements. 

representation of the function and its slope are independent in the Fourier series 
analysis; that is to say, the slope is not merely the spatial differentiation of Eq. (15). 
This is a result of Hermite cubic polynomials being chosen as the basis for the 
numerical solution. Values of c and &/8x are generated from Eq. (14) at given nodal 
locations with no correlation being implied between the two. Furthermore, it is 
assumed in the series representations given above that the behavior of the temporal 
frequency, &, for Cj and aCj/aX is the same. If one was to examine through a Fourier 
series analysis the accuracy of the spatial discretization only, thus dealing with Eq. 
(13), this approximation would be exact. Introducing discrete values of c and k/ax in 
time causes an associated error which is taken to be no larger than the error 
corresponding to the approximation of the temporal derivative. 

As in the case of the analytical operator, it is necessary to consider only one 
arbitrary term in each of the above expressions, viz., 

cj - cjn = F,, exp[@Q + S,(jdx)], (17) 

z-$jn = S, exp[IjO”t + iu,(j~Ix)]. 
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Substituting these expressions into the collocation equations for a typical spatial 
increment and solving for the temporal frequency of the numerical solution one 
obtains 

~=~(~,~,~n,~~ao,a,), (19) 

where 

DAt Q”--- 
AX2 

and 

The functional form of Eqs. (19) and (5) are not the same due to the discretization in 
time and space of the numerical scheme. Therefore, differences in the dissipative and 
translational properties of the components of the numerical and analytical solutions 
should be expected (see Fig. 1). 

COMPARISON OF NUMERICAL AND ANALYTICAL BEHAVIOR 

Similarities in the series expansions for the analytical and numerical solutions are 
now considered. The coefficients describing the initial conditions for both the 
numerical and analytical expressions are the same; therefore, at t = 0 the analytical 
solution is exactly represented to the degree of accuracy provided by the truncated 
numerical series. However, after an elapsed time of At, typical terms in the analytical 
and numerical solutions have the following form: 

C ItAf - F, exp[ljO,(t + At) + ?a,,~] = F, exp[fj3,t + ?a$] exp[@, At] 

= c’ exp[r@, At] = csl,,, (20) 

c,i+” - F, exp[&(t + At) + ia,,(j Ax)] = cj exp[$; At] = c?h, (21) 

where 1, and 1: are designated as analytical and numerical eigenvalues, respectively. 
The magnitude of the eigenvalue can be interpreted as the ratio of the amplitude of 
the nth Fourier component after an elapsed time of At to its amplitude at the 
beginning of the time step. After the nth component has propagated one complete 
wavelength this dissipative ratio takes the following form: 

1 exp(pfl, At)1 = 1 exp(vp:, At)J’vn = 12; lNn, (22) 

where N, is the number of time steps necessary to propagate the nth component 
through one wavelength, 

N,= 
L L n=-.!!.-~ 
u At Ax% (23) 

In view of Eqs. (21) and (22) the stability of the numerical scheme is guaranteed 
when the magnitude of L; is bounded from above by unity for all n. 
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A corresponding analytical representation is obtained through the combination of 
Eq. (5) with the definition of the analytical eigenvalue (Eq. (20)). Thus after the 
propagation of one wavelength we have 

( exp(@JV, dt)l = ) exp(-Dap, dt) exp(--iu,uN, &)I. (24) 

Because the magnitude of exp(-iu,uN, dt) is unity Eq. (24) reduces to 

1 exp(@,N, dt)l = (exp(-Dat, ~It))~n = IA, IN. (25) 

which upon substituting the definition for the wave number simplifies to 

IAnINn= (exp ( -4n2@ (e)*))*‘. (26) 
” 

A comparison of the dissipative character in the analytical and numerical solutions 
can be considered as one measure of the accuracy of the numerical approximation. 
Hence, the amplitude ratio is defined as 

(27) 

If the nth component of the numerical series solution exactly represents the analytic 
behavior, the above ratio would have a value of unity. Values less than one indicate 
that after the propagation of one wavelength the amplitude of the numerical wave is 
less than anticipated by the analytical results. The opposite is implied for values 
greater than one. 

The translational property of the Fourier series component is characterized by the 
phase angle which may be expressed in terms of the real and imaginary parts of the 
eigenvalue. The nth component of the numerical Fourier series expansion has a phase 
angle of 0; after one time step has elapsed, where 

I A’ 
&=tan-l 5 , 

( j e 

Figure 1 gives a graphical representation of this definition. After this component has 
propagated through one wavelength the value of the numerical phase angle is N,&. 
However, after the propagation of one wavelength analytically, the Fourier 
component is translated exactly through 2~ radians. The difference between these two 
values constitutes a phase lag or lead and thus a second measure of the relative 
accuracy of the numerical scheme, 

z n = B;N, - 2n. (29) 



54 SHAPIRO AND PINDER 

ANALYSIS OF ORTHOGONAL COLLOCATION 

The stability of the classical orthogonal collocation method can be demonstrated 
for several values of GS using a plot of the magniudes of the numerical eigenvalues 
(see Fig. 3). In this particular case a time weighting coefficient of y = 0.5 and a 
dimensionless velocity value of P = 0.738 is used. This scheme is shown to be stable 
for all values of Ax because movement along the abscissa can be interpreted in two 
ways. Larger values of L,/Ax are generated by either 

(1) considering an entire spectrum of values for the physical wavelength (L,) 
and one value of Ax, or 

(2) decreasing the values of Ax for a given L, with the understanding that GB 
and P remain constant. 

The latter implies that as Ax decreases, corresponding changes in At, D, or u must 
also be considered to accommodate unchanging values of the dimensionless 
parameters PS and P. 

The amplitude ratio and phase lag plots for this formulation are displayed in Figs. 
4 and 5, respectively. The values of y and .% previously mentioned are employed for 
various values of g. Clearly, as the convective term becomes dominant, depicted by 
decreasing values of @, the behavior of the amplitude ratio over the entire spectrum 
of wavelengths more closely reflects the analytical properties. However, the opposite 
is true with respect to the translational properties as illustrated in the phase-lag 
diagram. Furthermore, both properties display convergence to analytical behavior for 
large values of L,/Ax. 
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FIG. 3. Magnitude of numerical eigenvalues for orthogonal collocation (standard formulation). 
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FIG. 4. Amplitude ratio for orthogonal collocation (standard formulation). 
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To determine the impact of phase lag and amplitude modification on the numerical 
solution the series approximation to Eq. (15) is evaluated using appropriate initial 
conditions and numerical eigenvalues. Because the most difficult test of a numerical 
scheme is the propagation of an initially sharp front we use this initial condition 
which can be written (Gray and Pinder [ 11) 

c(x) = 1 - H(x), t = 0, (30) 

where H(X) is the unit step function. The F, coefficients in (15) are therefore defined 
by 

F, = & [* -et”“]. (31) 

The solutions obtained for y = 0.5, % = 0.738, and several values of C2 are presented 
in Fig. 6. It is apparent that as the convective term becomes dominant the solution is 
characterized by large oscillations. Gray and Pinder [ 1 ] recognized this phenomena 
to be the result of the numerical dispersion of smaller wavelength harmonics. 

Returning to Fig. 4 one notes that the greatest deviation from the analytical 
behavior is associated with the solution which displays the least oscillations 
(% = 0.0738 in Fig. 6). To understand this apparent contradictory behavior it is 
necessary to examine individual components of the Fourier series. This information is 
presented in Fig. 7 for the Fourier component corresponding to the 4Ax wavelength. 

r I I I 

---- 10.00738 
- 8 = 0.00738 

FIG. 6. Numerical solution to a parabolic partial differential equation formulated using numerical 
eigenvalues. 
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FIG. 7. Contribution of a small wavelength Fourier component in the numerical solution of a 
parabolic partial differential equation. 

Here the waveform associated with each of the solutions observed in Fig. 6 is plotted. 
Clearly, in convection dominated equations the smaller wavelengths play a more 
important role in the definition of the solution. Figures of this type will be considered 
later when various numerical schemes are examined. 

While the standard collocation method is stable and convergent, it fails to provide 
acceptable engineering solutions to parabolic partial differential equations with 
significant first-order terms. To alleviate these diffkulties, Pinder and Shapiro [3] 
formulated a collocation scheme using asymmetric basis functions. Initially it 
appeared most consistent to apply the asymmetric basis function to each term in the 
governing equation. For the temporal and spatial increments considered there was an 
excellent match between this formulation and the analytical solution. The undesirable 
oscillations were removed with only a modest smearing of the solution profile. A 
Fourier series analysis of this scheme shows that it satisfies the stability criteria (see 
Fig. 8). However, examination of Figs. 9 and 10 demonstrates that amplitude ratio 
and phase-lag behavior are divergent for this modification in the collocation method. 
That is, the analytical and numerical properties diverge as L,/Ax increases. 

The dashed curves in Figs. 8-10 are results from a second collocation scheme 
proposed as a means of effectively handling Eq. (1) when there is a significant first- 
order spatial term. In this formulation the asymmetric basis function is employed 
only in the convective term. This formulation is physically motivated since 
convection is not a symmetric process. Figures 9 and 10 show this scheme to be 
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FIG. 10. Phase lag for two upstream weighted orthogonal collocation schemes. 

convergent in comparison to the prior formulation when the same value of the 
weighting parameters (a, and a,) are employed. Furthermore, all combinations of $9, 
P, a,, and CY~ proved to satisfy convergence and stability for this upstream weighted 
collocation technique. As a result of changing the formulation of the numerical 
scheme, the values of the weighting coeffkients necessary to provide a satisfactory 
comparison with the analytical solution also change. Figure 11 shows that this 
scheme removes oscillations at the expense of smearing the solution profile. 

ANALYSIS OF UPSTREAM WEIGHTING IN SEVERAL NUMERICAL SCHEMES 

The behavior of standard finite element, finite difference, and collocation methods 
in the solution of parabolic partial differential equations with significant first-order 
terms is displayed in Fig. 12. The parameters employed in each of the numerical 
techniques are y = 0.5, G9 = 0.000738, and % = 0.738. These solutions are clearly 
unacceptable and upstream weighting schemes have been developed to damp the 
spurious oscillations. At this point a Fourier analysis is employed to establish the 
impact on the numerical solution for each of the upstream weighting techniques, the 
results of which are displayed in Fig. 13. 

Orthogonal Collocation 

Standard and optimal upstream weighted (second formulation above) collocation 
solutions are compared in Figs. 14-18. The stability of both the standard and 
modified schemes is recognized in the eigenvalue plot (see Fig. 14). The amplitude 

581/39/l-5 
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FIG. 11. Solution to a parabolic partial differential equation formulated using numerical eigenvalues 
from an orthogonal collocation scheme. 
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ratio and phase-lag diagrams, Figs. 15 and 16, respectively, explain the oscillations 
present in the standard formulation. The amplitude of the Fourier components of the 
numerical scheme exactly represents the analytical behavior. However, as a result of 
the small wavelengths being out of phase, numerical difftculties in the standard 
formulation arise. Notice also that the phase lag is associated with oscillations 
preceding the sharp front as displayed in Fig. 12. The translational properties of the 
numerical scheme are, therefore, slower than the predicted analytical behavior. 
Modifying the collocation scheme through the use of an asymmetric basis function in 
the convective term alters two characteristics of the numerical scheme, 

(1) elimination of the phase lag associated with the small wavelengths, 
(2) a degree of damping over the entire range of wavelengths. 

In Fig. 17 a comparison of the contribution of the 4Ax wavelength to the series 
solution for the anlytical, standard, and modified schemes is made. The amplitude of 
the wave associated with the standard scheme is exactly that of the analytic. 
However, a phase lag is shown to exist. Modifying the scheme removes the phase lag 
at the cost of altering the amplitude. A similar comparison can be made with respect 
to a larger wavelength, as displayed in Fig. 18 for the 1OAx wave. The phase 
properties of the standard and modified schemes closely represent the analytical 
behavior. However, as forecast in Figs. 15 and 16 the amplitude of the modified 
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FIG. 17. Contribution of the 4 Ax wave in the orthogonal collocation solution of a convection 
dominated parabolic partial differential equation. 
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FIG. 18. Contribution of the 10 Ax wave in the orthogonal collocation solution of a convection 
dominated parabolic partial differential equation. 

scheme is again reduced. It is the damping of the amplitude which causes the charac- 
teristic smearing of the sharp front normally associated with upstream weighting 
techniques. This phenomenon gives the appearance of additional dispersion in the 
physical problem. 

Finite D$Serence 

An upstream weighted finite difference scheme is formulated using a weighted 
average of forward and backward difference approximations to the first-order spatial 
derivative, i.e., 

z$ (&p)(‘i+;;‘i) + (++/I)( y-l) . (32) 

As in the orthogonal collocation scheme, the degree of weighting is dependent upon 
the magnitude of the convective and dispersive terms. The value /3 = 0.36 provided a 
best fit with the analytical solution subject to the constraint of no oscillations. The 
stability of both the standard and modified schemes is apparent from Fig. 19. 
Examination of the amplitude ratio and phase diagrams (Figs. 20 and 21) once again 
reveals the cause of the oscillations in the standard finite difference scheme. The 
small wavelengths which play a significant role in the definition of the solution 
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exhibit a phase lag. Modifying the scheme does not adjust this error. Therefore, 
upstream weighting in the finite difference formulation merely damps those waves 
which are out of phase in order to achieve a smooth solution. Figures 20 and 21 also 
demonstrate that the modified scheme is convergent. 

Finite Element 

Two upstream weighted Galerkin finite element schemes are analyzed. Each is 
formulated using an asymmetric weighting function. This is in contrast to the 
collocation scheme which employs an asymmetric basis function. The modified 
weighting function was developed by Huyakorn [2] through the addition of a 
quadratic term to a linear chapeau function. The most consistent approach is to apply 
the weighting function to each term in the residual, viz., 

1 R . w,(x) dx = 
I 

i = 1, 2 ,..., N, (33) 

where 

c^ = 5 c,(t) 4,(x> 
j=l 

and 

(x - xj II/AX, 
6 = 1 (xi+ 1 --x)/Ax, 

xj-1 <X<Xj, 

xj<x<xj+le 

(34) 
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The modified weighting function is defined as 

(x--p) -2(x-Ax)P, x(-1 GxGxi, 
Ji = (35) 

(x. l-t1 -x) 3x 
Ax + j-g (x - AxlP9 xi<x<xi+lV 

where the value of /I is dependent on the magnitude of the convective and dispersive 
terms. A second approach is also analyzed. This involves associating the modified 
weighting function with only the convective term 

i 
R . wi(x) dx = I, (g$i+u$Ji-D$$i) dx=O, i= 1,2,...,N. (36) 

/ I 

The stability of the standard formulation and the two modified schemes is displayed 
in Fig. 22. The amplitude ratio and phase diagrams for the three finite element 
schemes are shown in Figs. 23 and 24, respectively. As in the previous numerical 
techniques, the difficulties associated with the standard formulation are due to the 
small wavelengths being out of phase and their amplitude not being suffkiently 
damped. 

Upstream weighting plays a different role in each of the modified finite element 
techniques. When the asymmetric weighting function is applied to all terms in the 
residual the method fails to give an acceptable solution as shown in Fig. 13. A value 
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of /3 = 5.5 is necesssary to remove the oscillations preceding the sharp front. 
However, in doing this, oscillations are generated on the downstream side of the 
solution profile. This is predicted by the phase diagram where phase accelerations are 
forecast for small wavelengths. The fact that this method fails to damp out these 
wavelengths results in their appearance as oscillations. Even though unacceptable 
results are obtained, this numerical scheme is convergent for the parameters used. 
The second upstream weighted finite element scheme behaves in a similar manner to 
that of the finite difference scheme previously described. The phase lag associated 
with the small wavelengths of the standard formulations is not altered. However, 
these wavelengths are damped, thereby generating a smooth solution. A value of 
p = 0.27 was necessary to obtain this result. 

CONCLUSIONS 

(1) A Fourier series analysis of modified numerical schemes is one method of 
analyzing stability and convergence. The Fourier series analysis also provides infor- 
mation which gives insight into the numerical difficulties of a given numerical 
scheme. 

(2) The modified orthogonal collocation scheme using asymmetric basis 
functions alleviates numerical diIIiculties associated with parabolic partial differential 
equations having significant first-order terms. Oscillations are removed at the cost of 
moderately smearing the solution profile. Other modified numerical schemes provide 
similar results. 

(3) The role upstream weighting plays in alleviating numerical difficulties is 
different for each numerical scheme. The modified collocation method provides 
extremely accurate translational properties as a means of eliminating numerical 
oscillations. Upstream weighted finite difference and finite element schemes rely 
primarily on damping the amplitude of the small wavelength harmonics which are out 
of phase. This is equivalent to adding additional dispersion to the physical problem. 

APPENDIX: NOTATION 

C analytical solution to differential operator 
c^ numerical approximation to the solution of differential operator 
D dispersion coefficient 
fa dimensionless dispersion 
Fn Fourier coefficient representing the initial conditions for the function c A 

; 
=(-I)“2 

L" 
imaginary part of a complex number 
differential operator 

L” wavelength 
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number of time steps necessary to propagate a Fourier component through 
one wavelength 
residual of the differential operator 
real part of a complex number 
Fourier coefftcient representing the initial conditions for the slope of the 
function c 
time coordinate 
velocity 
dimensionless velocity 
weighting function in method of weighted residuals 
spatial coordinate 
upstream weighting coefficients for the basis functions in the orthogonal 
collocation scheme 
upstream weighting coefficient for finite element and finite difference 
schemes 

’ analytical temporal frequency of Fourier component 
numerically generated temporal frequency of Fourier component 
positions the discretized spatial derivative in the time domain 
time increment 
spatial increment 
Dirac delta function 
numerically generated phase angle of Fourier component after one time 
increment 
analytical eigenvalue 
numerically generated eigenvalue 
phase lag between numerical and analytical solutions 
wave number 
basis functions in orthogonal collocation 
basis function in finite element scheme 
weighting function in finite element scheme 

Superscripts 

t evaluation at known time 
t+At evaluation at unknown time 

Subscripts 

.i nodal index 
i weighting function index 
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